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ABSTRACT

Polycomb group (PcG) proteins are transcriptional
repressors, which regulate proliferation and cell
fate decisions during development, and their
deregulated expression is a frequent event in
human tumours. The Polycomb repressive
complex 2 (PRC2) catalyzes trimethylation (me3) of
histone H3 lysine 27 (K27), and it is believed that this
activity mediates transcriptional repression. Despite
the recent progress in understanding PcG function,
the molecular mechanisms by which the PcG
proteins repress transcription, as well as the mech-
anisms that lead to the activation of PcG target
genes are poorly understood. To gain insight into
these mechanisms, we have determined the global
changes in histone modifications in embryonic stem
(ES) cells lacking the PcG protein Suz12 that is es-
sential for PRC2 activity. We show that loss of PRC2
activity results in a global increase in H3K27 acetyl-
ation. The methylation to acetylation switch correl-
ates with the transcriptional activation of PcG target
genes, both during ES cell differentiation and in
MLL-AF9-transduced hematopoietic stem cells.
Moreover, we provide evidence that the acetylation
of H3K27 is catalyzed by the acetyltransferases
p300 and CBP. Based on these data, we propose
that the PcG proteins in part repress transcription

by preventing the binding of acetyltransferases to
PcG target genes.

INTRODUCTION

Polycomb group (PcG) proteins are transcriptional repres-
sors that play an essential role in cell fate decisions during
development (1,2). They exist in two distinct multiprotein
Polycomb repressive complexes (PRCs) namely, PRCI1
and PRC2 (2). The PRC2 complex contains the three
PcG proteins EZH2, EED and SUZI12, and the SET
domain of EZH2 catalyzes the di- and trimethylation
(me2/me3) of histone H3K27 (3-6). In contrast to
PRC2, which is a well-defined complex, the PRCI
complex is in reality not a single complex, but a multitude
of complexes containing different PcG proteins. PRCI1
catalyzes the wubiquitylation (Ubi) of histone H2A
mainly through the ubiquitin E3 ligase activity of
RINGIB (1,2). The PRC1 and PRC2 complexes share a
large number of common target genes and the majority of
these genes encode for important developmental regula-
tors (7-9). Consistent with this, the core subunits of
PRC2 (Ezh2, Eed and Suzl12) and PRCI (Ringlb) are
essential for mouse embryonic development at early
postimplantation stages (10-13). PRCI recruitment to
target genes is dependent on the activity of the PRC2
complex, and it has been suggested that this could
involve the specific binding of the chromodomain
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proteins of the PRC1 complex to H3K27me3 (3,5,14,15).
Importantly, increased expression of different subunits of
PRC2 (EED and EZH2) and PRC1 (BMI1) as well as
translocations of the SUZI2 gene locus, are frequent
events in human cancers (16-20). Moreover, increased
PcG levels can contribute to transformation in vitro
(EZH2, BMII, CBX7 and CBXS8) and in vivo (BMII
and CBX?7), supporting the notion that PcG proteins
have oncogenic properties (16-18,21,22).

Despite recent results have provided substantial new
knowledge regarding the biochemical and biological func-
tions of PRC1 and PRC2, several aspects regarding the
mechanisms by which the PcGs control transcription have
not been addressed yet. This includes the molecular mech-
anisms by which H3K27me3 maintains transcriptional re-
pression, as well as the mechanisms that regulate the
activation of target genes upon loss of PcG binding. To
obtain insights into the functional consequences of
H3K27me3 loss, we have performed mass spectrometry
on histones stably isotope labeled with amino acids in
cell culture (SILAC) purified from both WT and Suzl2
KO embryonic stem (ES) cells and quantified the global
levels of histone modifications in the presence or absence
of H3K27me3. By this approach, we have shown that the
loss of H3K27me3 results in increased levels of H3K27Ac.
Further experiments demonstrated that these increased
levels of H3K27Ac are specifically dependent of the
PRC2 activity and that increased H3K27Ac levels are
located at the promoters of PcG target genes. Moreover,
we show that the increase in H3K27Ac levels correlates
with PcG displacement from promoters during both ES
cell differentiation and upon MLL-AF9 transduction of
hematopoietic stem and progenitor cells (HSPC).
Finally, we provide evidence that both histone
acetyltransferases (HAT), p300 and Cbp play an import-
ant role in histone H3K27Ac. Based on these results, we
propose that preventing H3K27 acetylation is an import-
ant part of the mechanism by which PRC2 represses
transcription.

MATERIALS AND METHODS
Cell culture and cell line generation

All ES cells were cultured on 0.1%/1x PBS gelatinized
Tissue Culture (TC) plates (Nunc) in Glasgow media
(Sigma) supplemented with 15% FBS (Hyclone),
Penicillin/Streptomycin ~ (P/S)  (Gibco),  Glutamax
(Gibco), Non-Essential Amino Acids (Gibco), Sodium-
Pyruvate (Gibco), [-mercaptoethanol (Gibco) and
leukemia inhibitory factor.

For SILAC labelling: to obtain full incorporation of
heavy isotope, the previously described Suz/2~/~ mouse
ES cells (23) were cultured for 6 days in SILAC DMEM
(Sigma) containing 15% dialyzed FBS (Gibco), P/S
(Gibco), NEAA (Gibco), Pyruvate (Gibco), 50mM
B-mercaptoethanol, D-glucose (3.57g/1), (105mg/l; final
0.802mM), ESGRO LIF (10'U/ml; Chemicon),
0.802mM r-Leucine (Sigma), 0.398 mM L-Arginine
(Sigma) and 0.798 mM L-Lysine (Sigma). Lys8 isotope
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(Cambridge Isotopes, CNLM-291) was used for the
Suz127/~ ES cells.

Ezh2 conditional (loxP/loxP) ES cells were generated by
TC expansion of the inner cell mass outgrowths of Ezh2
loxP/loxP E3.5 embryos (blastocysts) (24) as described
previously (25). Ezh2™/~ ES cells were generated by tran-
sient expression of CRE recombinase in Ezh2 loxP/loxP
ES cells using Lipofectamine 2000 (Invitrogen) transfec-
tion reagent following manufacturer’s instructions.
Ezh27'~ clones were identified by PCR genotyping and
subsequentely expanded in TC as described above.

Suz127'~ rescued ES cells were generated by inactiva-
tion of the gene-trap cassette by transient CRE expression.
Suz127'~ rescued ES cell clones were generated following
the same procedure described for the Ezh27/~ ES cells.
Positive ES cell clones were identified by western blot
analysis using a specific Suz12 antibody (Santa Cruz).

Eed ™'~ cells (26), Gal4-EZH2 293T cells were described
previously (27). MLL-AF9 hematopoietic stem cells
(HSPCs) were generated as described previously (28).
Cell transduction was modified using Retronectin
instead of spinoculation as described previously (29).
Viruses were produced using a pMSCV MLL-AF9 retro-
viral expression vectors described elsewhere (30). TC of
FDCP-mix cells and differentiation into granulocytes
was performed as described previously (31).

siRNA

siRNA oligos were purchased from Sigma. The different
target sequences are available in Supplementary Table S1.
siRNA oligos were delivered into ES cells using
Lipofectamine 2000 (Invitrogen) following manufacturer’s
instructions.

Histone purification and mass spectrometry

Histones were purified with the histone purification kit
(Active Motif) according to the manufacturer’s instruc-
tion. Briefly, cells were lysed in extraction buffer at 4°C
overnight on rotating platform. Cleared lysates were
neutralized by addition of 5x neutralizing buffer and
loaded on pre-equilibrated column packed with purifica-
tion resin. Columns were extensively washed with histone
wash buffer and histones were eluted in 0.5ml fractions
using elution buffer. Purified histones were separated on a
SDS-PAGE 15% acrylamide gel and visualized by
Coomassie staining. The concentration of purified
histones was measured using Q-bit (Invitrogen). Heavy
and light amino acid-labeled histones were mixed in a
1:1 ratio and a total of 200 ug histone mixture was
separated by reverse phase-high performance liquid
chromatography (RP-HPLC) using a CI18 column
(250 x 2mm, Jupiter, 300A; Phenomenex, Torrance,
CA, USA) on an Akta-Basic system (GE healthcare).
The A buffer consisted of 0.06% trifluoroacetic acid
(TFA) in ddH20. The HPLC gradient, made of B buffer
[0.04% TFA + 90% acetonitrile (MeCN, Sigma)],
increased from 5-35% in 10 min, 35-60% in 60 min and
60-90% in 2min. A detailed description of tandem mass
spectrometry and data analysis of the purified histones is
described elsewhere (32). Briefly, samples were digested
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with the endoprotease ArgC (Calbiochem) and the peptide
mixtures were analyzed by easyLC (Proxeon, Odense,
Denmark) interfaced to LTQ-Orbitrap (ThermoFisher
Scientific, Bremen, Germany). The raw data from
LTQ-Orbitrap was converted to mgf files using
Proteome Discoverer 1.0 software (ThermoFisher
Scientific). Database searching was performed against a
custom-made database containing mouse histones
retrieved from Uniprot using Mascot Daemon version
2.1.0 (Matrix Science).

ChIP analysis

ChIP analyses were performed as described (33). Briefly,
cells were fixed in 1% formaldehyde/lx PBS for 10 min.
Then they were blocked with 0.125M glycine for 5min,
washed extensively in 1x PBS, collected in SDS buffer,
pelleted and re-suspended in IP buffer. Samples were
sonicated with the Diagenode Bioruptor in 1.5ml for
8min at high power and chromatin sonication controlled
on 2% agarose gels. The DNA was sonicated to
~700-400bp in all experiments. For each IP, ~1 mg of
chromatin was used. Primary antibodies were incubated
overnight at 4°C on a rotating platform. To each sample,
30 ul of 50% slurry of protein A-Sepharose (Amersham)
beads were added for 2-3h. Beads were washed three
times in 150 mM wash buffer and one time in 500 mM
wash buffer. Beads (and input samples) were resuspended
in 120pul of 0.1% SDS, 0.1M NaHCOj; buffer and
de-cross-linked at 65°C for a minimum of 3h. DNA was
purified using Qiagen PCR purification kit following the
manufacturer’s instruction and eluted in 200 pul of H>O.
Eluted material of 1-2pul was used for each real-time
quantitative PCR (qPCR) reaction.

Antibodies

For western blot, the following antibodies were used:
rabbit-anti H3K27me3 (Cell Signaling Technology,
97338); rabbit-antiH3K27Ac (Upstate/Millipore,
07-360); rabbit-antiH3K4me3 (Cell Signaling
Technology, 9751S); rabbit-anti Histone H3 (Abcam,
ab1791); goat-anti Suz12 (Santa Cruz, sc-46264); rabbit-
anti B-Tubulin (Santa Cruz, sc-9104); rabbit-anti H3K9Ac
(Upstate, 06-942); rabbit-anti H3K9me3 (Upstate,
07-442); rabbit-anti H3KI14Ac (Abcam, ab46984);
rabbit-anti Gal4 (Santa Cruz, sc-510); rabbit-anti P300
(Santa Cruz, sc-585); rabbit-anti CBP (Santa Cruz,
sc-369); mouse-anti Vinculin (Abcam, ab18058); and
mouse-anti Ezh2 as described previously (34).

For ChIP assays the following antibodies were used:
rabbit-anti H3K27me3 (Cell Signaling Technology,
9733%5); rabbit-antiH3K27Ac (Abcam, ab4729);
rabbit-anti H3K9Ac (Upstate, 06-942); rabbit-anti acetyl
H3 (Upstate, 17-615); rabbit-anti Suz12 (Cell Signaling
Technology, 3737); rabbit-anti GAL4 (Santa Cruz,
sc-510); and rabbit-anti EZH2 as described previously

(12).
RINA extraction and expression analyses

RNA was purified from cells using the RNeasy extraction
kit (Qiagen) following the manufacturer’s instructions.

cDNA was prepared with TagMan  Reverse
Transcriptase kit (Applied Biosystems) following manu-
facturer’s instructions. Oligo-dT retro-transcribed RNA
of ~5ng was used in each real-time qPCR reaction.

Real-time qPCR primers

Primers sequences for both expression and ChIP analyses
are available in Supplementary Table S2.

Quantification of western blot analyses

Intensities of western blot bands were determined using
Image] software (rsbweb.nih.gov/ij/). Quantifications for
each experiment are calculated as the average of the
intensities of the H3K27Ac/H3 ratio calculated on
increasing exposures.

RESULTS

With the goal of achieving insights into the mechanisms of
PRC2-dependent transcriptional regulation, we decided to
investigate if the trimethylation of H3K27 influences other
posttranslational modifications of the histones. To do this,
we used Suz/2 KO mouse ES cells as a model system for
global loss of H3K27me3 and quantified by SILAC mass
spectrometry, the relative changes of a large number of
other histone modifications. We grew Suz/2 KO ES cells
(12) for 6 days (equal to approximately 15 population
doublings) in a media that contained heavy-
isotope-labeled lysine (Lys8) and Suz/2 WT ES cells in
media containing light-isotope-labeled lysine (Lys0)
(Figure 1A, left panel). The histones were purified from
these cells and analyzed by nanoLC-tandem mass spec-
trometry to determine the relative abundance of all
histone modifications in the two cell lines. The technical
aspect and the overall results of this analysis are described
in a separate manuscript (32). Interestingly, this analysis
showed that the most significant posttranslational change
of the histones in the Suz/2 KO ES cells, apart from the
global loss of H3K27me2 and H3K27me3 [Figure 1A and
(32)], was a significant increase of H3K27Ac (Figure 1A,
right panel). This observation could suggest the existence
of a posttranslational switch between the acetylation and
methylation of H3K27 controlled by PRC2.

To validate the mass spectrometry results, we per-
formed western blot analysis using antibodies specific for
H3K27me3 and H3K27Ac on histones purified from WT
and Suzl2 KO ES cells. In agreement with the mass
spectrometry data, loss of Suz12 results in a significant
increase of global H3K27Ac and a loss of H3K27me3
(Figure 1B). This result was confirmed in an independently
isolated Suz/2 KO ES cell line (12) (Figure 1C), strongly
suggesting that the increased H3K27Ac levels are a
specific consequence of Suzl2 loss.

These findings highlight the possibility that the switch
between H3K27 methylation and acetylation may play a
role in the transcriptional activation that follows displace-
ment of PcG proteins from promoters. Furthermore, they
may suggest that preventing H3K27 acetylation could be
part of the mechanism by which PRC2 controls transcrip-
tion. In order to obtain further evidence that this switch



Nucleic Acids Research, 2010, Vol. 38, No. 15 4961

A Lys-0 (light) Lys-8 (heavy) 51 MH32 B Suz12 4+ o
s — 45{ OH33
wt Suz12 +/- g 4 H3K27me3 | s
g 35/
£ 3
S H3K27Ac -
H1- - - E 2.54
©
N
——> s
nanoLC-tandem H3K4me3 | S
mass spectrometry 1]
CoreI: 2 : 0.5
Histones i L
- Suz12 +/+ /- +4+ /- +/+ /- H3 | e
K27me2 K27me3 K27Ac
c E
+/+ /- /-
Suzi2 (SBE1)(SBES) Suz12  ++ /- -
+Suz12
H3K27Ac [T
Suzi2 |
H3 | amow s omes B-Tubulin M
H3K27me3 | -
D
Olig1 Olig2 H3K27Ac -
5,
(2]
<
€5 4
> ]
52 H3K9AC - —
S5
O T
cm 31
oI
T o
2% He | i - G
o > 21
B
N
&
2
Ponceau
Suzi12 ++ /- ++ /-

Figure 1. Loss of Suzl2 induces H3K27 hyperacetylation. (A) (left panel) Coomassie-blue staining of SILAC-labeled histones purified from
light-isotope-labeled (Lys-0) WT ES cells and heavy-isotope-labeled (Lys-8) Suz/2 KO ES cells. Nanolc-tandem mass spectrometry quantification
of the K27 methylation and acetylation levels of H3.2 and H3.3 in WT and Suz/2 KO ES cells (right panel). (B) Western blot analyses of histones
purified from WT and Suz/2 KO ES cells using the indicated antibodies. H3 is presented as loading control. (C) Western blot analyses of histones
purified from WT and two independent Suz/2 KO ES cell lines using the indicated antibodies. H3 is presented as loading control. (D) ChIP analysis
of the Oligl and Olig2 promoter in WT and Suz/2 KO ES cells using an H3K27Ac-specific antibody. H3K27Ac signal is normalized to histone
density using an H3-specific antibody. (E) Western blot analyses of total protein extracts obtained from WT and Suz/2 KO ES cell before and after
CRE expression using the indicated antibodies. B-tubulin, H3 and Ponceau staining are presented as loading controls.

occurs specifically at the promoters of PRC2 target genes,
we tested the H3K27Ac levels at the Oligl and Olig2 pro-
moters (8) in WT and Suz/2 KO ES cells by ChIP
analysis. Consistent with the results presented in
Figure 1B and C, loss of Suzl2 results in a specific
increase of H3K27Ac of the Oligl and Olig2 promoters
(Figure 1D).

The global increase of H3K27Ac in Suzl12 KO ES cells
suggests that the PcG proteins antagonize an H3K27
acetyltransferase activity. Thus, we tested if re-expression
of Suz12 in the KO ES cells could restore wild type levels
of H3K27 posttranslational modifications. To do this, we
inactivated the gene-trap cassette (12) by CRE-mediated
excision of the splice-acceptor site situated upstream of the
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B-galactosidase-neomycin cassette. Western blot analysis
of Suzi2 KO ES cells before and after CRE expression
demonstrated that the inactivation of the gene-trap
cassette restores physiological level of Suzl2 expression
(Figure 1E). Importantly, western blot analyses on
histones purified from the same cells demonstrated that
the re-expression of Suzl2 restores global H3K27me3
levels and, at the same time, decreases H3K27Ac to
levels comparable to those observed in WT ES cells
(Figure 1E). Taken together, these results strongly
suggest that the PcG proteins prevent H3K27 acetylation
of target genes.

Next, we wanted to analyze if loss of other components
of the PRC2 complex also leads to increased global levels
of H3K27Ac. To do this, we analyzed the H3K27me3 and
H3K27Ac levels in ES cell lines lacking different compo-
nents of PRC2. Western blot analyses of histones purified
from either WT or Suzl2, Eed and Ezh2 KO ES cells
demonstrated that all the PcG subunits of the PRC2

complex are essential for H3K27 trimethylation
(Figure 2A). Moreover, loss of H3K27me3 leads to a
global increase of H3K27Ac in all the different PRC2
KO ES cell lines (Figure 2A). Finally, ChIP analyses in
Suzl2 and Eed KO ES cells showed that H3K27Ac is spe-
cifically increased at the Olig2 promoter when compared
to WT ES cells (Figure 2B), confirming the results pre-
sented in Figure 1B and D.

To directly analyze if PRC2 recruitment to target genes
excludes H3K27Ac, we took advantage of a reporter
system developed in our laboratory that combines the in-
tegration of a heterologous luciferase reporter construct
containing five Gal4 DNA binding sites with the stable
expression of a Gal4-EZH2 fusion protein (27). As previ-
ously reported (27), Gal4-EZH2 expression leads to a
strong repression of luciferase activity (Figure 2C).
Moreover, ChIP analysis using Gal4-, EZH2- and
SUZ12-specific antibodies demonstrated that EZH2
binding to the artificial promoter recruits endogenous
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Figure 2. PRC2 activity regulates H3K27Ac levels. (A) Western blot analyses of histones purified from WT, Eed™'~, Suz127/~, Ezh2 conditional
(Ezh2 loxP/loxP) and Ezh2™'~ ES cells using the indicated antibodies. H3 is presented as loading control. (B) ChIP analysis of the Olig2 promoter in

WT, Suzi2 and Eed KO ES cells using the indicated antibodies. Signals are normalized to histone density using an H3-specific antibody. (C) Western
blot analyses using the indicated antibodies and luciferase activity of 293T cells containing a stable integration of a heterologous Gal4/luciferase
reporter construct before and after Gal4-EZH?2 expression. (D) ChIP analysis of the luciferase TSS in the cells presented in (C) using the indicated
antibodies. Gal4, EZH2 and SUZ12 enrichments are presented as percentage of input while the different histone modifications signals are normalized

to histone density using an H3-specific antibody.




components of the PRC2 complex (Figure 2D, upper
panel). Importantly, PRC2 recruitment to the luciferase
promoter correlates with increased H3K27me3 levels and
a significant decrease of H3K27Ac (Figure 2D, lower
panel). Moreover, EZH2 recruitment to the luciferase
promoter does not lead to an enrichment of H3K9me3,
but to a loss of H3K9 acetylation and possibly of other
acetylated H3 residues as indicated by the decrease in
global H3 acetylation (see Figure 2D; Ac-H3 ChIP
measuring K14/K9 acetyl H3). Consistent with previous
publications (27,33), EZH2 recruitment also correlates
with a strong decrease of H3K4me3 (Figure 2D).
In order to understand the contribution of lysine
de-acetylation in EZH2-mediated transcriptional repres-
sion, we treated the cells presented in Figure 2C with the
HDAC inhibitor Trichostatin-A (TSA). As shown in
Figure 2E, 6 h treatment with TSA abolished the repres-
sive activity of EZH2. All together, these data show that
PRC2-mediated trimethylation of H3K27 is sufficient to
displace and/or prevent acetylation of histone H3 at PcG
target genes.

The differentiation of ES cells to neural precursor cells
(NPC) leads to the displacement of the PcG proteins from
~50% of their target genes and to their recruitment to a
similar number of other target genes (35). In both situ-
ations, binding of PcG proteins correlates with repressed
transcription, whereas loss of PcG binding correlates with
transcriptional activation (35). To analyze if H3K27
acetylation is involved in the transcriptional activation
of PcG target genes, we differentiated ES cells into
NPCs, and characterized PcG binding and H3K27 modi-
fications by ChIP analyses. We focused on two genes
whose expression changes in opposite direction during
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differentiation. One gene, Hoxa$, is repressed in ES cells
and transcribed in NPC cells (Figure 3A, left panel). The
other gene, Fgf4, is expressed at high levels in ES cells and
silenced in NPC cells (Figure 3B, left panel). To analyze
PRC2 recruitment and the modification status of H3K27
in these two conditions, we performed ChIP analysis using
Suzl12-, H3K27me3- and H3K27Ac-specific antibodies in
ES and NPC cells. Consistent with Hoxa5-specific NPC
expression, the Suz12 binding and the H3K27me3 levels at
the Hoxa5 promoter are strongly reduced in NPC cells
(Figure 3A). Moreover, loss of PRC2 activity in NPC
is associated with a strong increase of H3K27Ac levels
that correlates with Hoxa5 transcriptional activation
(Figure 3A). In contrast, Suz12 and H3K27me3 are not
found associated with the Fgf4 promoter in ES cells
(Figure 3B). Importantly, lack of PcG activity at Fgf4
promoter correlates with a strong enrichment of
H3K27Ac and with high expression of Fgf4 in ES cells
(Figure 3B). Differentiation of ES cells to NPC leads to
a strong repression of Fgf4 transcription that correlates
with the recruitment of Suzl2, the loss of H3K27Ac¢ and
the enrichment of H3K27me3 (Figure 3B). Together, these
data provide strong evidence for a competition between
H3K27me3 and H3K27Ac in regulating gene expression
during ES cell differentiation.

Homeotic genes (HOX) are the best-characterized PcG
target genes. HOX genes play an essential role in the regu-
lation of normal development (36). Moreover, deregula-
tion of HOX expression has been linked to the
development of different forms of human cancer (37).
For example, HOXA9 overexpression in HSPC is import-
ant for HSPC immortalization (38), and the specific acti-
vation of HOXA9 expression is a feature of several
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Figure 3. Regulation of H3K27me3 and H3K27Ac during ES cell differentiation. (A and B) qPCR expression (left panels) and ChIP analyses (right
panels) of the Hoxa5 and Fgf4 promoters in ES and NPC cells using the indicated antibodies. Suz12 enrichments are presented as percentage of input
while H3K27Ac and H3K27me3 signals are normalized to histone density using an H3-specific antibody.
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leukemic fusion proteins including MLL-AF9 (39-41). To
investigate if the increased expression of Hoxa9 in
immortalized HSPC involves transcriptional mechanism
similar to the one described above for ES cell differenti-
ation, we compared MLL-AF9 immortalized c-kit™ HSPC
with a multipotent hematopoietic progenitor cell line
FDCP-mix [the FDCP-mix cells were chosen to allow
the expansion in TC of normal hematopoietic progenitors
(31)]. As previously reported (28,42), MLL-AF9
immortalized HSPCs are blocked at the progenitor stage
of the granulocytic differentiation pathways as confirmed
by the expression of the granulocytic marker Lipocalin
(Figure 4A). Lipocalin expression is silenced in the
FDCP-mix cells and is activated to similar levels as in
MLL-AF9 expressing cells when induced to differentiate
into granulocytes (Figure 4A). Importantly, Hoxa9 ex-
pression was specifically detected in the MLL-AF9 ex-
pressing cells, but not in the differentiating FDCP-mix
cells demonstrating the direct role of MLL-AF9 in
Hoxa9 transcriptional activation (Figure 4A).

To compare the effect of MLL-AF9 on the
posttranslational modification of H3K27 on the Hoxa9
promoter, we performed ChIP analyses using
H3K27me3- and H3K27Ac-specific antibodies in undiffer-
entiated FDCP-mix cells and in MLL-AF9 expressing
HSPC. In agreement with our previous observations,
MLL-AF9 expression correlates with a specific loss of
H3K27me3 from the Hoxa9 promoter (Figure 4B).
Importantly, this loss correlates with a strong increase of
H3K27Ac and, consistent with the data presented in

Figure 2D, with an increase in H3K9Ac (Figure 4B).
Taken together, these data show that MLL-AF9 can
compete for PcG binding to the Hoxa9 promoter and
suggests that the molecular switch between H3K27me3
and H3K27Ac might play a role in Hoxa9 expression.

In mammals, 17 different HATs have been
characterized so far and several of these have been
reported to acetylate different lysine residues of histone
H3 (43). To identify the HAT that could be involved in
H3K27 acetylation, we generated a library containing
three different siRNA oligonucleotides for each of the 17
HATs. First, we tested the efficiency of the different oligo-
nucleotides to reduce the expression of ecach gene by
real-time qPCR analysis of RNA extracted from Suzl2
KO ES cells transfected with control (scrambled) or the
specific siRNA oligonucleotide for 48h. As shown in
Figure 5A, the qPCR analysis showed that at least one
oligonucleotide per gene reduced the expression of the
target gene by at least 80%. Next, we picked the most
efficient siRINA oligonucleotide for each gene and tested
the effects of siRINA knockdown on H3K27Ac by western
blot analysis. An example is presented in Figure 5B
showing that siRNAs to Hatl, Kat2b, Cbp and p300 led
to a significant reduction of H3K27Ac. While we were
unable to further validate the effects of Hatl and Kat2b
downregulation (data not shown), independent experi-
ments using different oligonucleotides to Cbp and p300
led to a loss of H3K27Ac levels in Suzl2 KO cells
(Figure 5C and D) as further confirmed by the quantifica-
tion presented in Figure SE. Importantly, the siRNA
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Figure 4. Regulation of H3K27me3 and H3K27Ac target gene binding in MLL-AF9 HSPCs and FDCP-mix cells. (A) B-Globin, Lipocalin and
Hoxa9 qPCR expression analyses in FDCP-mix cells before and after granulocytic differentiation and in MLL-AF9-expressing HSPC. (B) ChIP
analyses of Hoxa9 and Oligl promoters in FDCP-mix cells and MLL-AF9-expressing HSPCs using the indicated antibodies. H3K27Ac, H3K9Ac
and H3K27me3 signals are normalized to histone density using an H3-specific antibody.
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Relative expression in Suz12 -/- ES cells
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Figure 5. p00 and Cbp are required for efficient H3K27 acetylation in Suz/2 KO ES cells. (A) qPCR expression analyses of the indicated genes in
Suzl2 KO ES cells transfected for 48h with the indicated siRNA oligos. ‘U’ indicates the control siRNA oligo carrying a scrambled oligoribo-
nucleotide sequence. (B) Western blot analyses of histones purified from Suz/2 KO ES cells transfected with the indicated siRNA oligos using the
indicated antibodies. H3 is presented as loading control. Quantification of the H3/H3K27Ac signal is indicated above each lane. A scrambled siRNA
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transfected with the indicated siRNA oligos using the indicated antibodies. Vinculin, Ponceau staining and H3 are presented as loading controls. A
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oligonucleotide that induced the most efficient
downregulation of p300 correlates with the strongest re-
duction of H3K27Ac (Figure 5C). Taken together, these
results suggest that p300 and Cbp are the major H3K27
HATSs in ES cells.

To obtain independent evidence that Cbp and p300 are
regulating H3K27 acetylation, we took advantage of the
ability of anacardic acid (AA) to inhibit the in vitro and
in vivo acetyltransferase activity of p300 and CBP (44,45).
Thus, we analyzed the H3K27Ac levels in Suz/2 KO ES
cells cultured in the presence of AA for 72h by western
blot analysis. As shown in Figure 6A, the treatment of two
independent Suz/2 KO ES cell lines with AA led to a
strong reduction of H3K27Ac. Moreover, overexposure
of the same western blots showed that, in WT ES, the
physiological levels of H3K27Ac are also reduced upon
AA treatment. Importantly, while H3K27Ac was
strongly reduced upon AA treatment, the acetylation of
other histone H3 lysine residues was only mildly (H3K9)
or not affected (H3K 14) (Figure 6B). Although we cannot
exclude that AA treatment could also inhibit the activity
of other acetyltransferases, these data, together with the

siRINA results presented in Figure 5, strongly support that
p300 and Cbp are H3K27 acetyltransferases and further
suggest a competition between PRC2, p300 and Cbp in the
posttranslational modification of H3K27.

DISCUSSION

By using an unbiased approach, we have identified and
characterized a switch between the acetylation and the
trimethylation of H3K27 that correlates with the tran-
scriptional activation and repression of PcG target
genes, respectively. We have shown that such changes in
H3K27 posttranslational modifications occur both during
ES cell differentiation and upon MLL-AF9 transform-
ation. Finally, we have provided evidence that H3K27
acetylation is (at least in part—see long exposure in
Figure 6A) controlled by the activity of p300 and Cbp.
In addition to preventing the acetylation of H3K27, our
results suggest that the association of the PcG proteins
and H3K27 methylation also inhibit the ‘spreading’ of
acetylation to other H3 residues (Figures 2D and 4B).
The activation and the recruitment of Cbp/p300 may
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involve Trithorax (Trx)-like factors that, by competing
with PcG repressive activity, are required for the mainten-
ance of active transcription of target genes (1,2). The fact
that loss of PRC2 activity leads to a global increase of
H3K27Ac and that re-expression of Suz12 in the KO ES
cells restores WT levels of H3K27Ac suggests that the
HAT activity (likely P300 and Cbp) could be limiting in
these conditions. In agreement with this model,
genome-wide localization analysis have shown that the
binding sites for p300 and PRC2 do not significantly
overlap (46).

The Trx-like activity may involve the mixed lineage
leukemia proteins (MLL1-5), the mammalian orthologues
of Drosophila Trx. The MLL proteins are histone
methyltransferases  (HMTs)  catalyzing di- and
trimethylation of H3K4 and exist in large multiprotein
complexes (47). Several chromatin-modifying enzymatic
activities are associated with the MLL proteins, including
the H3K4-specific HMT ASH2 and the H3K27me3/me2
histone demethylase UTX (33). However, the switch from
H3K27me3 to H3K27Ac might not require de novo
methylation of H3K4. In ES cells, H3K27me3 often
coexists with H3K4me3 generating so-called ‘bivalent
domains’ (48). Although bivalent domains are not
confined to ES cells (35), the fact that H3K4me3 does
not exclude H3K27me3 suggests that the H3K4 methyla-
tion is independent of the MLLs. Thus, the major function
of the MLLs could be to recruit HATs to PcG target
promoters. In this context, it is interesting that MLL has
also been shown to bind directly to Cbp (49). Taken
together with our results this may suggest that MLL
is mediating the recruitment of Cbp, and due to their

functional association also p300 and PCAF/GCNS5 (50),
to PcG-regulated promoters.

Our results are in agreement with recent work from the
Harte laboratory (51). Like in mouse ES cells, these
authors have shown that loss of H3K27me3 in
Drosophila melanogaster results in a global increase of
H3K27Ac, and that this requires the activity of Cbp (the
Drosophila orthologue of mammalian Cbp and p300).
Moreover, the authors showed that Trx is essential for
Cbp-mediated H3K27Ac. Together with our data, these
data support the notion that H3K27Ac is controlled by
Cbp and p300 throughout evolution and therefore,
suggests that the mechanism of transcriptional regulation
is conserved between distantly related species. In our ex-
periments, we find a more modest effect on H3K27 acetyl-
ation by siRNA-mediated knockdown of p300 and Cbp
than reported for Drosophila Cbp. We do not know the
reason for this difference; however, it could be due to the
redundant functions of Cbp and p300 in mammalian cells
as well as siRNA-based experiments that do not lead to a
complete knockdown of the targeted gene. This assump-
tion is further supported by the results presented in
Figure 5C showing that the H3K27Ac levels are depend-
ent on the efficiency of p300 downregulation. Of note, we
have tried to knockdown Cbp and p300 simultaneously
in ES cells; however, this is very toxic for the ES cells
and we have therefore not been able to analyze the
H3K27 acetylation levels in such cells. Nevertheless,
inhibition of Cbp and p300 acetyltransferase activity
by AA treatment in Suzl2 KO ES cells led to a strong
decrease of H3K27Ac, further supporting the
siRNA-based data.



The mechanism by which the PcG and TrxG proteins
are recruited in mammalian cells is still not well under-
stood. In flies, PcG and TrxG proteins are recruited to
Polycomb responsive elements (PRE) often located
several kilo bases from transcription start sites (TSS)
(52). Different DNA-binding transcription factor
mediates the recruitment of PcG and TrxG proteins at
PREs in flies (52). These factors, with the exception of
YY1 (the mammalian orthologue of Pho), are not
conserved in mammalian cells. In mammalian cells,
several proteins have been suggested to participate in
PcG promoters. Recently, we and others have shown
that the DNA-binding protein Jarid2 is part of the
PRC2 complex and that Jarid?2 is required for recruitment
of PcG proteins to most of their target genes in mouse ES
cells (53-55). However, as in flies, PcG recruitment most
likely involves the combined presence of several transcrip-
tion factors to provide the necessary combinatorial diver-
sity to regulate the several thousand PcG target genes in
stem cells and during differentiation. Independently of
these mechanisms our findings, together with the data
obtained in D. melanogaster (51), suggest that both the
competing mechanisms of PcG and TrxG recruitment to
the same target sites and the antagonistic enzymatic
activities that regulate transcription are conserved
throughout evolution.

The correlation between the increased levels of
H3K27Ac, the loss of H3K27me3 and the reactivation
of genes during ES cell differentiation suggest that the
switch in H3K27 posttranslational modification could
play a role in the correct regulation of gene expression
during development. Consistent with this, similar to PcG
proteins (10-13), KO mice for either p300 or Cbp are em-
bryonic lethal between E8.5-11.5 highlighting the essential
role of these proteins in the regulation of embryonic
development (56,57). Moreover, also similar to the
PRC2 PcG proteins, p300 and Cbp are not required for
ES cell proliferation, but are essential for the correct
in vitro differentiation of ES cells (58).

The model proposed in Figure 6C is also in agreement
with the observation that MLL-AF9 immortalization of
HSPCs increase the expression of Hoxa9 and that this
correlates with loss of H3K27me3 and increased levels
of H3K27Ac at the Hoxa9 promoter. Hoxa9 expression
plays an important role in the development of leukemia.
Moreover, the displacement of PcG proteins mediated by
MLL-AF9 expression further supports the idea of a com-
petition between PcG and TrxG proteins at the same
target gene. It is likely that H3K27Ac involves the
activity of CBP and p300 also in this context, and it is
therefore tempting to speculate that MLL-AF9 mediates
the recruitment of p300 and CBP to the Hoxa9 promoter
and that this activity could be important for the trans-
formation process. In support of this, both CBP and
p300 are found directly fused to MLL in several
leukemia patients, and it has been shown that the HAT
activity of both proteins is essential for the oncogenic po-
tential of these fusion proteins (59-61).

It is important to mention that H3K27 is not the only
substrate of p300 and Cbp. Several reports have shown
that p300 and Cbp can acetylate different lysine residues
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of histone H3 as well as other non-histone proteins
(62,63). Nevertheless, our data suggest that PcG binding
and H3K27me3 are sufficient to prevent acetylation of
unmodified lysine residues of histone H3. Moreover, ac-
cessibility of H3K27 followed by the displacement of PcG
proteins might be the triggering event that, starting from
H3K27Ac, leads to the hyperacetylation of other H3K27
surrounding lysines (Figure 6C). In summary, our findings
provide novel important insights into the mechanisms of
PcG- and TrxG-mediated regulation of gene expression
required for proper cellular differentiation and
leukemogenesis.
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